Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 12(1): 50, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566120

RESUMO

Tumor-associated microglia and blood-derived macrophages (TAMs) play a central role in modulating the immune suppressive microenvironment in glioma. Here, we show that GPNMB is predominantly expressed by TAMs in human glioblastoma multiforme and the murine RCAS-PDGFb high grade glioma model. Loss of GPNMB in the in vivo tumor microenvironment results in significantly smaller tumor volumes and generates a pro-inflammatory innate and adaptive immune cell microenvironment. The impact of host-derived GPNMB on tumor growth was confirmed in two distinct murine glioma cell lines in organotypic brain slices from GPNMB-KO and control mice. Using published data bases of human glioma, the elevated levels in TAMs could be confirmed and the GPNMB expression correlated with a poorer survival.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Humanos , Camundongos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/patologia , Glioma/patologia , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Microambiente Tumoral
2.
Dis Model Mech ; 16(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37990867

RESUMO

Neurofibromatosis type 1 (NF1) is an autosomal dominant condition caused by germline mutations in the neurofibromin 1 (NF1) gene. Children with NF1 are prone to the development of multiple nervous system abnormalities, including autism and brain tumors, which could reflect the effect of NF1 mutation on microglia function. Using heterozygous Nf1-mutant mice, we previously demonstrated that impaired purinergic signaling underlies deficits in microglia process extension and phagocytosis in situ. To determine whether these abnormalities are also observed in human microglia in the setting of NF1, we leveraged an engineered isogenic series of human induced pluripotent stem cells to generate human microglia-like (hiMGL) cells heterozygous for three different NF1 gene mutations found in patients with NF1. Whereas all NF1-mutant and isogenic control hiMGL cells expressed classical microglia markers and exhibited similar transcriptomes and cytokine/chemokine release profiles, only NF1-mutant hiMGL cells had defects in P2X receptor activation, phagocytosis and motility. Taken together, these findings indicate that heterozygous NF1 mutations impair a subset of the functional properties of human microglia, which could contribute to the neurological abnormalities seen in children with NF1.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neurofibromatose 1 , Animais , Humanos , Camundongos , Genes da Neurofibromatose 1 , Microglia/patologia , Mutação/genética , Neurofibromatose 1/genética , Neurofibromina 1/genética
3.
Medicina (Kaunas) ; 59(10)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37893509

RESUMO

Background and Objectives: Neurosurgery has been underrepresented in the medical school curriculum. Advances in augmented reality and 3D printing have opened the way for early practical training through simulations. We assessed the usability of the UpSurgeOn simulation-based training model and report first experiences from a hands-on neurosurgery course for medical students. Materials and Methods: We organized a two-day microneurosurgery simulation course tailored to medical students. On day one, three neurosurgeons demonstrated anatomical explorations with the help of life-like physical simulators (BrainBox, UpSurgeOn). The surgical field was projected onto large high-definition screens by a robotic-assisted exoscope (RoboticScope, BHS Technologies). On day two, the students were equipped with microsurgical instruments to explore the surgical anatomy of the pterional, temporal and endoscopic retrosigmoid approaches. With the help of the RoboticScope, they simulated five clipping procedures using the Aneurysm BrainBox. All medical students filled out a digital Likert-scale-based questionnaire to evaluate their experiences. Results: Sixteen medical students participated in the course. No medical students had previous experience with UpSurgeOn. All participants agreed that the app helped develop anatomical orientation. They unanimously agreed that this model should be part of residency training. Fourteen out of sixteen students felt that the course solidified their decision to pursue neurosurgery. The same fourteen students rated their learning experience as totally positive, and the remaining two rated it as rather positive. Conclusions: The UpSurgeOn educational app and cadaver-free models were perceived as usable and effective tools for the hands-on neuroanatomy and neurosurgery teaching of medical students. Comparative studies may help measure the long-term benefits of UpSurgeOn-assisted teaching over conventional resources.


Assuntos
Realidade Aumentada , Estudantes de Medicina , Humanos , Currículo , Simulação por Computador , Encéfalo
4.
J Am Soc Nephrol ; 33(12): 2259-2275, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35985814

RESUMO

BACKGROUND: CKD is characterized by a sustained proinflammatory response of the immune system, promoting hypertension and cardiovascular disease. The underlying mechanisms are incompletely understood but may be linked to gut dysbiosis. Dysbiosis has been described in adults with CKD; however, comorbidities limit CKD-specific conclusions. METHODS: We analyzed the fecal microbiome, metabolites, and immune phenotypes in 48 children (with normal kidney function, CKD stage G3-G4, G5 treated by hemodialysis [HD], or kidney transplantation) with a mean±SD age of 10.6±3.8 years. RESULTS: Serum TNF-α and sCD14 were stage-dependently elevated, indicating inflammation, gut barrier dysfunction, and endotoxemia. We observed compositional and functional alterations of the microbiome, including diminished production of short-chain fatty acids. Plasma metabolite analysis revealed a stage-dependent increase of tryptophan metabolites of bacterial origin. Serum from patients on HD activated the aryl hydrocarbon receptor and stimulated TNF-α production in monocytes, corresponding to a proinflammatory shift from classic to nonclassic and intermediate monocytes. Unsupervised analysis of T cells revealed a loss of mucosa-associated invariant T (MAIT) cells and regulatory T cell subtypes in patients on HD. CONCLUSIONS: Gut barrier dysfunction and microbial metabolite imbalance apparently mediate the proinflammatory immune phenotype, thereby driving the susceptibility to cardiovascular disease. The data highlight the importance of the microbiota-immune axis in CKD, irrespective of confounding comorbidities.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Insuficiência Renal Crônica , Humanos , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Inflamação , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/metabolismo , Fator de Necrose Tumoral alfa , Criança , Adolescente
5.
Cell Rep ; 39(2): 110670, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417708

RESUMO

Factors released from glioma-associated microglia/macrophages (GAMs) play a crucial role in glioblastoma multiforme (GBM) progression. Here, we study the importance of CCL18, a cytokine expressed in human but not in rodent GAMs, as a modulator of glioma growth. Since CCL18 signaling could not be studied in classical mouse glioma models, we developed an approach by transplanting induced pluripotent stem cell-derived human microglia and human glioma cells into mouse brain slices depleted of their intrinsic microglia. We observe that CCL18 promotes glioma cell growth and invasion. Chemokine (C-C motif) receptor 8 (CCR8) is identified as a functional receptor for CCL18 on glioma cells, and ACP5 (acid phosphatase 5) is revealed as an important part of the downstream signaling cascade for mediating glioma growth. We conclude, based on the results from an in vitro, ex vivo humanized glioma model and an in vivo GBM model that microglia/macrophage-derived CCL18 promotes glioma growth.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Linhagem Celular Tumoral , Quimiocinas CC , Humanos , Macrófagos , Camundongos , Microglia , Receptores CCR8 , Fosfatase Ácida Resistente a Tartarato
6.
Acta Neuropathol Commun ; 8(1): 159, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912327

RESUMO

Microglia are the primary immune-competent cells of the central nervous system (CNS) and sense both pathogen- and host-derived factors through several receptor systems including the Toll-like receptor (TLR) family. Although TLR5 has previously been implicated in different CNS disorders including neurodegenerative diseases, its mode of action in the brain remained largely unexplored. We sought to determine the expression and functional consequences of TLR5 activation in the CNS. Quantitative real-time PCR and immunocytochemical analysis revealed that microglia is the major CNS cell type that constitutively expresses TLR5. Using Tlr5-/- mice and inhibitory TLR5 antibody we found that activation of TLR5 in microglial cells by its agonist flagellin, a principal protein component of bacterial flagella, triggers their release of distinct inflammatory molecules, regulates chemotaxis, and increases their phagocytic activity. Furthermore, while TLR5 activation does not affect tumor growth in an ex vivo GL261 glioma mouse model, it triggers microglial accumulation and neuronal apoptosis in the cerebral cortex in vivo. TLR5-mediated microglial function involves the PI3K/Akt/mammalian target of rapamycin complex 1 (mTORC1) pathway, as specific inhibitors of this signaling pathway abolish microglial activation. Taken together, our findings establish TLR5 as a modulator of microglial function and indicate its contribution to inflammatory and injurious processes in the CNS.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Microglia/metabolismo , Neurônios/patologia , Receptor 5 Toll-Like/metabolismo , Animais , Apoptose/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...